Mathematics A
MAT A-3-BP
Subject | Mathematics A (MAT A) |
Guarantee |
PhDr. Pavlína Račková, Ph.D. |
Department | Department of Mathematics and Physics |
Specialization | NO |
Profiling subject | NO |
Theory profiling subject | NO |
Final exam | NO |
Multi semestral subject | NO |
Subject is guaranted by other school | NO |
Optionality | Povinný |
Clasification | Zápočet + Zkouška |
Credits | 7 |
Recommended year/semester | 1/1 |
Number of weeks | 14 |
Celkem (h) | Př. | Cv. | Lab. | Sem. | Kurzy | Praxe | Stáže | Soustř. | Exkurze | Terén | SP | Konzultace | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Revision of secondary school mathematics – manipulations with algebraic expressions, powers, roots, exponential and logarithmic functions, logarithms, complex numbers, quadratic equations. | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Real functions of a single variable: – set notation, number sets, –mappings and their properties, – functions of a single real variable, graph, linear and quadratic functions, indirect proportionality, absolute value, – monotonicity, even and odd functions, boundedness, periodic functtions, – one-to-one functions, composition of functions. | 6 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Elementary functions: – exponential and logarithmic functions, – power function, – trigonometric and inverse trigonometric functions. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Polynomials and rational functions: – operations with polynomials, Horner's scheme, roots of polynomials, factorization in the real and complex domain, – sign of polynomials a rational functions. | 6 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Limit and continuity of functions: – definition, types of limits, properties, continuity, evaluation. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Derivative of a function: – motivation, geometric and physical meaning, definition, – derivatives of elementary functions, basic formulae for derivatives, – higher order derivatives.,, | 8 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Applications of derivatives: – tangent and normal to the graph of function, – theorems on continuous and differentiable functions, – l'Hospital's rule, monotonicity and local extrema, convexity and concavity, inflection points, – asymptotes to the graph of function and investigation of behaviour of functions, – global extrema. | 18 | 8 | 8 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Approximation of functions by polynomials: – differential of function, linearization, – Taylor's and Maclaurin's formula, Maclaurin formulae of some elementary functions. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Indefinite integral: – definition, basic properties, some basic formulae, – integration by parts and substitution method, – decomposition of rational functions into partial fractions and their integration, – integration of special types of functions (trigonometric, algebraic). | 12 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Definite integral: – construction and its basic properties, – fundamental theorem of calculus, integration by parts and substitution method. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Geometric and physical applications of definite integral, – evaluation of area, length and volume, mass and coordinates of equilibrium. | 6 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Improper integral: – extension of definite integral to unbounded intervals and unbounded functions, – tests of convergence, absolute and conditional convergence, – gamma and beta functions. | 8 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Povinná:
Kuben, J. Diferenciální počet funkcí jedné proměnné. Skriptum. 1. vydání. Brno: Vojenská akademie v Brně, 2015. viii+333 s. Dostupné v knihovně UO pod číslem S-3854. ISBN 978-80-7231-991-6.
Kuben, J., Hošková, Š. Integrální počet funkcí jedné proměnné. Skriptum. 1. vydání. Brno: Univerzita obrany, 2004. vi+197 s. Dostupné v knihovně UO pod číslem S-368. ISBN 80-85960-75-3.
Kropáč, J., Kuben, J. Funkce gama a beta, transformace Laplaceova, Z a Fourierova. Skriptum. 3. vydání. Brno: Vojenská akademie v Brně, 2002. vi+136 s. Dostupné v knihovně UO pod číslem S-731/B.
Doporučená:
Kuben, J. Differential calculus for functions of a single variable. Skriptum. 1. vydání. Brno: Univerzita obrany, 2012. x+321 s. Dostupné v knihovně UO pod číslem S-3573. ISBN 978-80-7231-849-0. Elektronická verze do-stupná z https://moodle.unob.cz/course/view.php?id=356 [cit. 2020-07-23.2].
Kuben, J. Integral calculus for functions of a single variable. Skriptum. 1. vydání. Brno: Univerzita obrany, 2011. x+227 s. Dostupné v knihovně UO pod číslem S-3146. ISBN 978-80-7231-798-1. Elektronická verze dostupná z https://moodle.unob.cz/course/view.php?id=356 [cit. 2020-07-23].
Kuben, J. Diferenciální počet funkcí jedné proměnné. Skriptum. 1. vydání. Brno: Vojenská akademie v Brně, 2015. viii+333 s. Dostupné v knihovně UO pod číslem S-3854. ISBN 978-80-7231-991-6.
Kuben, J., Hošková, Š. Integrální počet funkcí jedné proměnné. Skriptum. 1. vydání. Brno: Univerzita obrany, 2004. vi+197 s. Dostupné v knihovně UO pod číslem S-368. ISBN 80-85960-75-3.
Kropáč, J., Kuben, J. Funkce gama a beta, transformace Laplaceova, Z a Fourierova. Skriptum. 3. vydání. Brno: Vojenská akademie v Brně, 2002. vi+136 s. Dostupné v knihovně UO pod číslem S-731/B.
Doporučená:
Kuben, J. Differential calculus for functions of a single variable. Skriptum. 1. vydání. Brno: Univerzita obrany, 2012. x+321 s. Dostupné v knihovně UO pod číslem S-3573. ISBN 978-80-7231-849-0. Elektronická verze do-stupná z https://moodle.unob.cz/course/view.php?id=356 [cit. 2020-07-23.2].
Kuben, J. Integral calculus for functions of a single variable. Skriptum. 1. vydání. Brno: Univerzita obrany, 2011. x+227 s. Dostupné v knihovně UO pod číslem S-3146. ISBN 978-80-7231-798-1. Elektronická verze dostupná z https://moodle.unob.cz/course/view.php?id=356 [cit. 2020-07-23].
1. semestr – písemné testy během semestru, stanovené úkoly, zápočet a zkouška.