Mathematics C MAT C-3-BP
Subject Mathematics C (MAT C)
Guarantee Mgr. Jan Jekl, Ph.D.
Department Department of Mathematics and Physics
Specialization NO
Profiling subject NO
Theory profiling subject NO
Final exam NO
Multi semestral subject NO
Subject is guaranted by other school NO
Optionality Povinný
Clasification Zápočet + Zkouška
Credits 5
Recommended year/semester 2/3
Number of weeks 56
Celkem (h) Př. Cv. Lab. Sem. Kurzy Praxe Stáže Soustř. Exkurze Terén SP Konzultace PV
Multiple integrals: – double integral, construction, properties, Fubini theorem, – triple integral, construction, properties, Fubini theorem. 7 3 4 0 0 0 0 0 0 0 0 0 0 0
Transformations of integrals, polar, cylindrical and spherical coordinates, affine transformations. 7 3 4 0 0 0 0 0 0 0 0 0 0 0
Geometric and physical applications of double and triple integrals (area, volume, mass, equilibrium coordinates, moments of inertia and total charge). 5 1 2 2 0 0 0 0 0 0 0 0 0 0
Surface integral: – surfaces and their properties, regular patch of surface with boundary, orientable surfaces, orientation, – surface integral of scalar, motivation, construction, properties, evaluation, applications, – surface integral of vector, motivation, construction, properties, evaluation, applications. 7 3 4 0 0 0 0 0 0 0 0 0 0 0
Divergence, Stokes and Green theorems and their physical interpretation. 6 2 2 2 0 0 0 0 0 0 0 0 0 0
Probability: – mathematical model of random experiment, sample space, field of events, – concept of probability, properties, – model of classical and geometric probability, – conditional probability, independence of events, total probability formula and Bayes' theorem. 6 3 3 0 0 0 0 0 0 0 0 0 0 0
Random variable: – motivation, definition, distribution function and its properties, – discrete and continuous random variables, measures of location, dispersion, skewness and kurtosis. 6 3 3 0 0 0 0 0 0 0 0 0 0 0
Random variable distributions important in applications: – discrete distributions (binomial, geometric, Poisson, hypergeometric), – continuous distributions (uniforme, normal, exponential, Weibull, Student, Pearson, Fisher). 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Random vector: – motivation, joint and marginal distribution functions, – discrete and continuous vectors, independence, – covariance, correlation coefficient, – law of large numbers and the connection with the empiric probability definition, – central limit theorem and its connection with normal distribution. 8 4 4 0 0 0 0 0 0 0 0 0 0 0
Povinná:
Kuben, J., Mayerová, Š., Račková, P. Integrální počet funkcí více proměnných. Skriptum. 2., upravené vydání. Brno: Univerzita obrany, 2015. vi+142 s. Dostupné v knihovně UO pod číslem S-3638A. ISBN 978-80-7231-426-3.
Kropáč, J., Kuben, J. Skalární a vektorové pole, křivkový a plošný integrál. 1. vyd. Skriptum. Brno: Vojenská akademie v Brně, 1999. vi+118 s. Dostupné v knihovně UO pod číslem S-777.
Kropáč, J. Úvod do počtu pravděpodobnosti a matematické statistiky. Skriptum 2. vydání. Brno: Vojenská akademie v Brně, 2001. vi+176 s. Dostupné v knihovně UO pod číslem S-2546.

Doporučená:
Lešovský, V. Statistické tabulky. Skriptum. 1. vydání. Brno: Univerzita obrany, 2012. 12 s. Dostupné v knihovně UO pod číslem S-9064.
Likeš, J., Machek, J. Počet pravděpodobnosti. 1. vydání. Praha: SNTL, 1981. 160 s. Dostupné v knihovně UO pod číslem S-2670/10.

Písemné testy během semestru, stanovené úkoly, zápočet a zkouška.