Mathematics B MAT B-3-BP
Subject Mathematics B (MAT B)
Guarantee PhDr. Pavlína Račková, Ph.D.
Department Department of Mathematics and Physics
Specialization NO
Profiling subject YES
Theory profiling subject NO
Final exam NO
Multi semestral subject NO
Subject is guaranted by other school NO
Optionality Povinný
Clasification Zápočet + Zkouška
Credits 7
Recommended year/semester 1/2
Number of weeks 14
Celkem (h) Př. Cv. Lab. Sem. Kurzy Praxe Stáže Soustř. Exkurze Terén SP Konzultace PV
Series of constants: – sequences, limits of sequences, – infinite series of constants, convergence and divergence, remainder of series, – tests of convergence, series with non-negative terms, alternating series, – absolute and conditional convergence. 8 4 4 0 0 0 0 0 0 0 0 0 0 0
Series of functions: – introduction, domain of convergence, – power series, domain of convergence, properties and applications, – Maclaurin series of elementary functions. 8 4 4 0 0 0 0 0 0 0 0 0 0 0
Fourier series in real domain: – periodic functions, periodic extension, – trigonometric system and its orthogonality, – Fourier series, sine and cosine series, – Dirichlet conditions, point convergence of Fourier series. 8 4 2 2 0 0 0 0 0 0 0 0 0 0
Differential calculus for functions of several variables: – introduction, domain, graph (two variables), – limit, continuity, partial derivatives. 6 3 3 0 0 0 0 0 0 0 0 0 0 0
Total differential, tangent plane, Taylor's formula. 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Local and global extrema for functions of two variables. 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Implicitely defined functions of one and two variables, quadratic surfaces. 8 3 3 2 0 0 0 0 0 0 0 0 0 0
Ordinary differential equations: – first order ODE's, initial problem, geometric meaning, – elementary methods of solving first order ODE's, – linear first order ODE's, structure of solution. 8 4 4 0 0 0 0 0 0 0 0 0 0 0
Higher order ODE's, initial problem, – linear higher order ODE's, structure of solution of homogeneous and non-homogeneous equations, – homogeneous linear ODE's with constant coefficients, – non-homogeneous linear ODE's with constant coefficients, variation of constants method and method of undetermined coefficients. 12 6 4 2 0 0 0 0 0 0 0 0 0 0
Linear systems of ODE's with constant coefficeints, elimination method and usage of eigenvalues and eigenvectors of matrices. 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Vector analysis: – scalar and vector field, examples, – level curves of scalar field and vector curves of vector field, – gradient, divergence and curl, Hamilton operator, – directional derivative. 6 4 2 0 0 0 0 0 0 0 0 0 0 0
Line integral: – curves and their properties, curve orientation, – line integral of scalar, motivation, construction, properties, evaluation, applications, – line integral of vector, motivation, construction, properties, evaluation, applications, – path independence of line integral of vector, conservative vector field. 8 4 4 0 0 0 0 0 0 0 0 0 0 0
Povinná:
Kuben, J. Diferenciální počet funkcí více proměnných. Skriptum. 1. vydání. Brno: Vojenská akademie v Brně, 2001. v+128 s. Dostupné v knihovně UO pod číslem S-2550.
Kuben, J. Obyčejné diferenciální rovnice. Skriptum. 3. vydání. Brno: Vojenská akademie v Brně, 2000. vi+124 s. Dostupné v knihovně UO pod číslem S-18/C.
Potůček, R. Úvod do číselných a funkčních řad. Skriptum. 1. vydání. Brno: Univerzita obrany, 2010. v+112 s. Dostupné v knihovně UO pod číslem S-3821.
Kropáč, J., Kuben, J. Skalární a vektorové pole, křivkový a plošný integrál. 1. vyd. Skriptum. Brno: Vojenská akademie v Brně, 1999. vi+118 s. Dostupné v knihovně UO pod číslem S-777.
Kuben, J., Mayerová, Š., Račková, P., Šarmanová, P. Diferenciální počet funkcí více proměnných. 1. vydání. Ostrava: FEI VŠB–TU, 2012. 476 s. Dostupné z http://mi21.vsb.cz/modul/diferencialni-pocet-funkci-vice-promennych [cit. 2020-07-23].

2. semestr – písemné testy během semestru, stanovené úkoly, zápočet a zkouška.