Mathematics B
MAT B-3-BP
Subject | Mathematics B (MAT B) |
Guarantee |
PhDr. Pavlína Račková, Ph.D. |
Department | Department of Mathematics and Physics |
Specialization | NO |
Profiling subject | YES |
Theory profiling subject | NO |
Final exam | NO |
Multi semestral subject | NO |
Subject is guaranted by other school | NO |
Optionality | Povinný |
Clasification | Zápočet + Zkouška |
Credits | 7 |
Recommended year/semester | 1/2 |
Number of weeks | 14 |
Celkem (h) | Př. | Cv. | Lab. | Sem. | Kurzy | Praxe | Stáže | Soustř. | Exkurze | Terén | SP | Konzultace | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Series of constants: – sequences, limits of sequences, – infinite series of constants, convergence and divergence, remainder of series, – tests of convergence, series with non-negative terms, alternating series, – absolute and conditional convergence. | 8 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Series of functions: – introduction, domain of convergence, – power series, domain of convergence, properties and applications, – Maclaurin series of elementary functions. | 8 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fourier series in real domain: – periodic functions, periodic extension, – trigonometric system and its orthogonality, – Fourier series, sine and cosine series, – Dirichlet conditions, point convergence of Fourier series. | 8 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Differential calculus for functions of several variables: – introduction, domain, graph (two variables), – limit, continuity, partial derivatives. | 6 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total differential, tangent plane, Taylor's formula. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Local and global extrema for functions of two variables. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Implicitely defined functions of one and two variables, quadratic surfaces. | 8 | 3 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ordinary differential equations: – first order ODE's, initial problem, geometric meaning, – elementary methods of solving first order ODE's, – linear first order ODE's, structure of solution. | 8 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Higher order ODE's, initial problem, – linear higher order ODE's, structure of solution of homogeneous and non-homogeneous equations, – homogeneous linear ODE's with constant coefficients, – non-homogeneous linear ODE's with constant coefficients, variation of constants method and method of undetermined coefficients. | 12 | 6 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Linear systems of ODE's with constant coefficeints, elimination method and usage of eigenvalues and eigenvectors of matrices. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Vector analysis: – scalar and vector field, examples, – level curves of scalar field and vector curves of vector field, – gradient, divergence and curl, Hamilton operator, – directional derivative. | 6 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Line integral: – curves and their properties, curve orientation, – line integral of scalar, motivation, construction, properties, evaluation, applications, – line integral of vector, motivation, construction, properties, evaluation, applications, – path independence of line integral of vector, conservative vector field. | 8 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Povinná:
Kuben, J. Diferenciální počet funkcí více proměnných. Skriptum. 1. vydání. Brno: Vojenská akademie v Brně, 2001. v+128 s. Dostupné v knihovně UO pod číslem S-2550.
Kuben, J. Obyčejné diferenciální rovnice. Skriptum. 3. vydání. Brno: Vojenská akademie v Brně, 2000. vi+124 s. Dostupné v knihovně UO pod číslem S-18/C.
Potůček, R. Úvod do číselných a funkčních řad. Skriptum. 1. vydání. Brno: Univerzita obrany, 2010. v+112 s. Dostupné v knihovně UO pod číslem S-3821.
Kropáč, J., Kuben, J. Skalární a vektorové pole, křivkový a plošný integrál. 1. vyd. Skriptum. Brno: Vojenská akademie v Brně, 1999. vi+118 s. Dostupné v knihovně UO pod číslem S-777.
Kuben, J., Mayerová, Š., Račková, P., Šarmanová, P. Diferenciální počet funkcí více proměnných. 1. vydání. Ostrava: FEI VŠB–TU, 2012. 476 s. Dostupné z http://mi21.vsb.cz/modul/diferencialni-pocet-funkci-vice-promennych [cit. 2020-07-23].
Kuben, J. Diferenciální počet funkcí více proměnných. Skriptum. 1. vydání. Brno: Vojenská akademie v Brně, 2001. v+128 s. Dostupné v knihovně UO pod číslem S-2550.
Kuben, J. Obyčejné diferenciální rovnice. Skriptum. 3. vydání. Brno: Vojenská akademie v Brně, 2000. vi+124 s. Dostupné v knihovně UO pod číslem S-18/C.
Potůček, R. Úvod do číselných a funkčních řad. Skriptum. 1. vydání. Brno: Univerzita obrany, 2010. v+112 s. Dostupné v knihovně UO pod číslem S-3821.
Kropáč, J., Kuben, J. Skalární a vektorové pole, křivkový a plošný integrál. 1. vyd. Skriptum. Brno: Vojenská akademie v Brně, 1999. vi+118 s. Dostupné v knihovně UO pod číslem S-777.
Kuben, J., Mayerová, Š., Račková, P., Šarmanová, P. Diferenciální počet funkcí více proměnných. 1. vydání. Ostrava: FEI VŠB–TU, 2012. 476 s. Dostupné z http://mi21.vsb.cz/modul/diferencialni-pocet-funkci-vice-promennych [cit. 2020-07-23].
2. semestr – písemné testy během semestru, stanovené úkoly, zápočet a zkouška.