Mathematics E
MAT E-2-NP
Subject | Mathematics E (MAT E) |
Guarantee |
doc. RNDr. Jaromír Kuben, CSc. |
Department | Department of Mathematics and Physics |
Specialization | NO |
Profiling subject | YES |
Theory profiling subject | NO |
Final exam | NO |
Multi semestral subject | NO |
Subject is guaranted by other school | NO |
Optionality | Povinný |
Clasification | Zápočet + Zkouška |
Credits | 3 |
Recommended year/semester | 1/2 |
Number of weeks | 14 |
Celkem (h) | Př. | Cv. | Lab. | Sem. | Kurzy | Praxe | Stáže | Soustř. | Exkurze | Terén | SP | Konzultace | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerical analysis: – introduction to numerical methods, – types of errors, – properties of numerical algorithms, correctness and conditionality of numerical problems, – vector and matrix norms. | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Numerical solution of nonlinear equations: nonlinear equations withone unknown, the idea of numerical solution, separation and approximation, – main iterative methods for one equation (bisection method, false position method, simple iteration method, Newton method, secant method), – systems of nonlinear equations, simple iteration method and Newton method.) | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Numerical solution of systems of linear algebraic equations: – direct methods (Gaussian elimination method, LU decomposition, Cholesky method), | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Interpolation and approximation of functions: – the idea of approximation, categorization, – interpolating polynomials (Lagrange's, Newton's, equidistant case), – interpolating splines, cubic splines, – approximation using least squares method. | 6 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Numerical evaluation of definite integrals: – quadrature formulae and their properties, – Newton–Cotes closed and open formulae, basic and composite formulae, – Gaussian quadrature rules, – Romberg's method. | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Numerical solution of ordinary differential equations and their systems: – the idea of numerical solution of initial value problem for one first order ODE, – one-step methods (explicite, implicite), properties (errors, convergence, stability), – Runge–Kutta methods, – multistep methods (explicite, implicite), Adams methods, predictor-corrector methods, back differentiation methods, tough problems, generalization to systems of ODE's, – higher order ODE's. | 8 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Povinná:
Kuben, J. a Račková, P. Numerické metody. Skriptum. Brno: Univerzita obrany, 2016. viii+245 s. Dostupné v knihovně UO pod číslem S-3876. ISBN 978-80-7231-373-0.
Doporučená:
Přikryl, P. Numerické metody analýzy. 1. vydání. Praha: SNTL, 1985. 192 s. Dostupné v knihovně UO pod číslem S-2670/24.
Míka, S. Numerické metody algebry. 1. vydání. Praha: SNTL, 1982. 176 s. Dostupné v knihovně UO pod číslem S-2670/4.
Povinná multimediální:
Kuben, J. a Račková, P. Numerické metody. Elektronická učebnice. Brno: Univerzita obrany, 2019. 817 s. ISBN 978-80-7582-092-1. Dostupné z https://moodle.unob.cz/mod/resource/view.php?id=47767 [cit. 2020-07-26].
Kuben, J. a Račková, P. Numerické metody. Skriptum. Brno: Univerzita obrany, 2016. viii+245 s. Dostupné v knihovně UO pod číslem S-3876. ISBN 978-80-7231-373-0.
Doporučená:
Přikryl, P. Numerické metody analýzy. 1. vydání. Praha: SNTL, 1985. 192 s. Dostupné v knihovně UO pod číslem S-2670/24.
Míka, S. Numerické metody algebry. 1. vydání. Praha: SNTL, 1982. 176 s. Dostupné v knihovně UO pod číslem S-2670/4.
Povinná multimediální:
Kuben, J. a Račková, P. Numerické metody. Elektronická učebnice. Brno: Univerzita obrany, 2019. 817 s. ISBN 978-80-7582-092-1. Dostupné z https://moodle.unob.cz/mod/resource/view.php?id=47767 [cit. 2020-07-26].
Písemné testy během semestru, stanovené úkoly, zápočet a zkouška.