Analýza informačních zdrojů AIZ-5-MP
Název předmětu Analýza informačních zdrojů (AIZ)
Garant prof. Dr. Ing. Alexandr Štefek
Katedra Katedra informatiky a kybernetických operací
Předmět specializace NE
Předmět profilujícího základu ANO
Teoretický předmět PZ NE
Státní zkouška NE
Vícesemestrální předmět ANO

Navazující semestry předmětu (ročník/semestr):
Analýza informačních zdrojů (3/5)
Analýza informačních zdrojů (3/6)
Analýza informačních zdrojů (4/7)
Analýza informačních zdrojů (4/8)
Analýza informačních zdrojů (5/9)
Analýza informačních zdrojů (5/10)
Předmět jiné školy NE
Volitelnost Povinný
Klasifikace Zápočet + Zkouška
Kredity 4
Dop. roč./sem. 5/10
Počet týdnů 12
Celkem (h) Př. Cv. Lab. Sem. Kurzy Praxe Stáže Soustř. Exkurze Terén SP Konzultace PV
Neuronové sítě. Perceptron. Adaline. Vícevrstvé sítě. Deep Learning. Rozpoznávání znaků a obrazů. 18 4 2 12 0 0 0 0 0 0 0 0 0 0
Text Mining. Modely. Bag of Words. Tokenizace, Lemmatizace, Stematizace, Stop Words. Klasifikace textů. Spamový filtr. 18 4 2 12 0 0 0 0 0 0 0 0 0 0
Sentimentální analýza. 6 2 0 4 0 0 0 0 0 0 0 0 0 0
Analýza sociálních sítí, grafové algoritmy. Centralita. Sousedé. Kliky. Cesty. Vizualizace (MatrixPlot, ArcPlot, CircosPlot). Python - NetworkX. 12 4 0 8 0 0 0 0 0 0 0 0 0 0
Časové řady. Proudy. 6 2 0 4 0 0 0 0 0 0 0 0 0 0
Povinná:
Ondryhal, V. Analýza informačních zdrojů (části I – Databázové systémy (80s), II – Data mining (120s), III. – Algoritmy a datové struktury v Jazyce Python (60s)). Soubor elektronických příruček k předmětu, 260s, 2017

Doporučená:
Elmasri, R., Navathe, S., B., Database systems, Addison-Wesley, 2011. 1172s
Kamber, M., Han, J., Data Mining - Concepts and Techniques, Morgan Kaufmann Publishers, 2006, 770s
Russel, M., A., Mining the Social Web, O’Reilly, 2011, 333s
Marz, N., Warren, J., Big Data, Manning 2015, 308s
Goodrich, M., T., Tamassia, R., Goldwasser M., H., Data Structures & Algorithms, Wiley 2013, 747s
Bing, L. Sentiment Analysis, Cambridge 2015, 368s
Bing, L. Web Data Mining, Springer 2011, 624s
Raschka, S., Python Machine Learning, Packt Publishing 2015, 454s

5. semestr
Protokoly z LC. Samostatné úlohy v Python a PostreSQL (zápočet).
Zkouška (písemná a ústní část)
6. semestr
Protokoly z LC. Samostatné úlohy v CouchDB, Solr (zápočet)
7. semestr
Protokoly z LC. Samostatné úlohy v Python – Web Scraping (zápočet)
8. semestr
Protokoly z LC. EDA vybraného datového zdroje (zápočet)
9. semestr
Protokoly z LC. Vypracování semestrální úlohy (klasifikovaný zápočet)
10. semestr
Protokoly z LC. Vypracování semestrální úlohy (zápočet). Zkouška (písemná a ústní část)