Operational Research
OV-3-BP
| Subject | Operational Research (OR) |
| Guarantee |
RNDr. Michal Šmerek, Ph.D. |
| Department | Katedra kvantitativních metod |
| Specialization | NO |
| Profiling subject | YES |
| Theory profiling subject | NO |
| Final exam | NO |
| Multi semestral subject | NO |
| Subject is guaranted by other school | NO |
| Optionality | Povinný |
| Clasification | Zápočet + Zkouška |
| Credits | 4 |
| Recommended year/semester | 2/3 |
| Number of weeks | 14 |
| Celkem (h) | Př. | Cv. | Lab. | Sem. | Kurzy | Praxe | Stáže | Soustř. | Exkurze | Terén | SP | Konzultace | PV | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Linear programming, formulation of LP problem, types of LP problems | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Graphical method of LP problem solving | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Simplex method | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Method of Artificial Variables | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| Transportation problem, VAM method, optimality test, solution improvement, balanced transportation problem | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transportation problem, degenerate solution, alternative solution, unbalanced problem | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Assignment problem, Hungarian method | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Game theory, a normal form game, matrix games (MG), saddle point, MG of type 2×2 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MG of type 2×n, MG of type m×2, dominance principle. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Solving matrix games by transfer to linear programming problem. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Multi-criteria evaluation of variants, non-dominated variants. Method of the weighted sum. Graphical method. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Multicriterial Programming (MP): Formulation of MP problem, Feasible, Non-dominated, Compromise Solution, Methods. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Multicriterial programming (MP). Method of target programming. | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Povinná:
Šmerek, M. a J. Moučka. Ekonomicko-matematické metody. Brno: Univerzita obrany, 2008.
Mošová, V. Lineární programování. Vyškov: VVŠ PV, 1996.
Moučka, J. Úvod do teorie her. Vyškov: VVŠ PV, 1998.
Doporučená:
Němec, P. a M. Šmerek. Využití matematických metod při optimalizaci logistických procesů. Brno: Univerzita obrany, 2017.
Šmerek, M. Operační výzkum. [on-line], Univerzita obrany – Moodle, 2014. https://moodle.unob.cz/course/view.php?id=646
Šmerek, M. a J. Moučka. Ekonomicko-matematické metody. Brno: Univerzita obrany, 2008.
Mošová, V. Lineární programování. Vyškov: VVŠ PV, 1996.
Moučka, J. Úvod do teorie her. Vyškov: VVŠ PV, 1998.
Doporučená:
Němec, P. a M. Šmerek. Využití matematických metod při optimalizaci logistických procesů. Brno: Univerzita obrany, 2017.
Šmerek, M. Operační výzkum. [on-line], Univerzita obrany – Moodle, 2014. https://moodle.unob.cz/course/view.php?id=646
Zápočet – tři průběžné testy, účast na cvičení.
Zkouška – písemná.
8p + 8c