Mathematical Methods
MM-5-MP
Subject | Mathematical Methods (MM) |
Guarantee |
doc. Mgr. Kamila Hasilová, Ph.D. |
Department | Katedra kvantitativních metod |
Specialization | NO |
Profiling subject | YES |
Theory profiling subject | NO |
Final exam | NO |
Multi semestral subject |
YES Following semesters (year/semester) Mathematical Methods (1/1) Mathematical Methods (1/2) |
Subject is guaranted by other school | NO |
Optionality | Povinný |
Clasification | Zápočet |
Credits | 4 |
Recommended year/semester | 1/2 |
Number of weeks | 14 |
Celkem (h) | Př. | Cv. | Lab. | Sem. | Kurzy | Praxe | Stáže | Soustř. | Exkurze | Terén | SP | Konzultace | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Linear programming | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Graphical method of solving LP | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Artificial base method | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Simplex method | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Duality in LP tasks, dual simplex method | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Traffic problem, VAM method, optimality test, solution improvement, balanced task | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Traffic problem, degenerate solution, alternative solution, unbalanced task | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Assignment problem, Hungarian method | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Multi-criteria evaluation of variants (VHV), weighted sum method; graphical solution of the VHV task | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Multicriterial Programming (VP): Formulation of the VP task, admissible, non-dominant, compromise solution, methods of solving VP problems | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Game theory, play in normal shape, matrix games (MG), saddle point, MG type 2×2 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MG type 2×n, MG type m×2, dominance principle | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MG-type solution m×n by transfer to LP | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Selected application tasks from logistics and transport security | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Selected application tasks from logistics and transport security | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Multicriterial Programming (VP): Formulation of the VP task, admissible, non-dominant, compromise solution, methods of solving VP problems | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Multi-criteria evaluation of variants (VHV), weighted sum method; graphical solution of the VHV task | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MG-type solution m×n by transfer to LP | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MG type 2×n, MG type m×2, dominance principle | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Game theory, play in normal shape, matrix games (MG), saddle point, MG type 2×2 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Povinná:
Moučka, J. a P. Rádl. Matematika pro studenty ekonomie. 2. vyd. Praha: Grada, 2015.
Šortová, J. Diferenciální počet funkcí jedné proměnné. CD-ROM. Brno: Univerzita obrany, 2005.
Šmerek, M. a J. Moučka. Ekonomicko-matematické metody. Brno: Univerzita obrany, 2008.
Mošová, V. Lineární programování. Vyškov: VVŠ PV, 1996.
Moučka, J. Úvod do teorie her. Vyškov: VVŠ PV, 1998.
Doporučená:
Vágner, M. Integrální počet funkcí jedné proměnné. Brno: Univerzita obrany, 2005.
Němec, P. a M. Šmerek. Využití matematických metod při optimalizaci logistických procesů. Brno: Univerzita obrany, 2017.
Moučka, J. a P. Rádl. Matematika pro studenty ekonomie. 2. vyd. Praha: Grada, 2015.
Šortová, J. Diferenciální počet funkcí jedné proměnné. CD-ROM. Brno: Univerzita obrany, 2005.
Šmerek, M. a J. Moučka. Ekonomicko-matematické metody. Brno: Univerzita obrany, 2008.
Mošová, V. Lineární programování. Vyškov: VVŠ PV, 1996.
Moučka, J. Úvod do teorie her. Vyškov: VVŠ PV, 1998.
Doporučená:
Vágner, M. Integrální počet funkcí jedné proměnné. Brno: Univerzita obrany, 2005.
Němec, P. a M. Šmerek. Využití matematických metod při optimalizaci logistických procesů. Brno: Univerzita obrany, 2017.
1. semestr: připravenost na hodinu, zápočtový test, písemná zkouška
2. semestr: dva průběžné testy, účast na cvičení