Mathematical Methods MM-5-MP
Subject Mathematical Methods (MM)
Guarantee doc. Mgr. Kamila Hasilová, Ph.D.
Department Katedra kvantitativních metod
Specialization NO
Profiling subject YES
Theory profiling subject NO
Final exam NO
Multi semestral subject YES

Following semesters (year/semester)
Mathematical Methods (1/1)
Mathematical Methods (1/2)
Subject is guaranted by other school NO
Optionality Povinný
Clasification Zápočet
Credits 4
Recommended year/semester 1/2
Number of weeks 14
Celkem (h) Př. Cv. Lab. Sem. Kurzy Praxe Stáže Soustř. Exkurze Terén SP Konzultace PV
Linear programming 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Graphical method of solving LP 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Artificial base method 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Simplex method 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Duality in LP tasks, dual simplex method 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Traffic problem, VAM method, optimality test, solution improvement, balanced task 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Traffic problem, degenerate solution, alternative solution, unbalanced task 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Assignment problem, Hungarian method 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Multi-criteria evaluation of variants (VHV), weighted sum method; graphical solution of the VHV task 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Multicriterial Programming (VP): Formulation of the VP task, admissible, non-dominant, compromise solution, methods of solving VP problems 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Game theory, play in normal shape, matrix games (MG), saddle point, MG type 2×2 4 2 2 0 0 0 0 0 0 0 0 0 0 0
MG type 2×n, MG type m×2, dominance principle 4 2 2 0 0 0 0 0 0 0 0 0 0 0
MG-type solution m×n by transfer to LP 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Selected application tasks from logistics and transport security 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Selected application tasks from logistics and transport security 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Multicriterial Programming (VP): Formulation of the VP task, admissible, non-dominant, compromise solution, methods of solving VP problems 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Multi-criteria evaluation of variants (VHV), weighted sum method; graphical solution of the VHV task 4 2 2 0 0 0 0 0 0 0 0 0 0 0
MG-type solution m×n by transfer to LP 4 2 2 0 0 0 0 0 0 0 0 0 0 0
MG type 2×n, MG type m×2, dominance principle 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Game theory, play in normal shape, matrix games (MG), saddle point, MG type 2×2 4 2 2 0 0 0 0 0 0 0 0 0 0 0
Povinná:
Moučka, J. a P. Rádl. Matematika pro studenty ekonomie. 2. vyd. Praha: Grada, 2015.
Šortová, J. Diferenciální počet funkcí jedné proměnné. CD-ROM. Brno: Univerzita obrany, 2005.
Šmerek, M. a J. Moučka. Ekonomicko-matematické metody. Brno: Univerzita obrany, 2008.
Mošová, V. Lineární programování. Vyškov: VVŠ PV, 1996.
Moučka, J. Úvod do teorie her. Vyškov: VVŠ PV, 1998.

Doporučená:
Vágner, M. Integrální počet funkcí jedné proměnné. Brno: Univerzita obrany, 2005.
Němec, P. a M. Šmerek. Využití matematických metod při optimalizaci logistických procesů. Brno: Univerzita obrany, 2017.

1. semestr: připravenost na hodinu, zápočtový test, písemná zkouška

2. semestr: dva průběžné testy, účast na cvičení